metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(4-methylanilinium) pentachloridoantimonate(III) chloride monohydrate

Qian Xu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: xqchem@yahoo.com.cn

Received 27 February 2012; accepted 3 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 21.7.

The title compound, $(C_7H_{10}N)_3[SbCl_5]Cl\cdotH_2O$, consists of 4methylanilinium cations, Cl^- and $[SbCl_5]^{2-}$ anions and water molecules. The five Cl atoms bound to Sb [Sb-Cl =2.4043 (9)–2.6262 (11) Å] form a square-pyramidal coordination environment. In addition, two $[SbCl_5]^{2-}$ anions related by an inversion center are joined by Sb···Cl interactions [Sb···Cl =3.7273 (14) Å] into an $[Sb_2Cl_{10}]^{4-}$ dimer with two bridging Cl atoms. The anions, water molecules and ammonium groups of the cations are linked by N–H···Cl, N–H···O and O– H···Cl hydrogen bonds, forming layers parallel to the *ac* plane. The benzene rings of the 4-methylanilinium cations are packed between these layers.

Related literature

For the closely related structures of bis(anilinium) pentachloridoantimonate(III) and tris(anilinium) chloride pentachloridoantimonate(III) monohydrate, see: Lipka (1980) and Chaabouni *et al.* (2004), respectively.

Experimental

Crystal data (C₇H₁₀N)₃[SbCl₅]Cl·H₂O

 $M_r = 676.95$

Triclinic, P1	
a = 9.4109 (19) Å	
b = 12.867 (3) Å	
c = 13.501 (3) Å	
$\alpha = 63.35 \ (3)^{\circ}$	
$\beta = 83.08 \ (3)^{\circ}$	
$\gamma = 82.51 \ (3)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\rm min} = 0.649, T_{\rm max} = 0.730$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$vR(F^2) = 0.075$	independent and constrained
S = 1.06	refinement
6609 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
304 parameters	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
3 restraints	

V = 1445.1 (5) Å³

Mo $K\alpha$ radiation

 $0.31 \times 0.25 \times 0.22 \text{ mm}$

15103 measured reflections 6609 independent reflections 6031 reflections with $I > 2\sigma(I)$

 $\mu = 1.53 \text{ mm}^-$ T = 293 K

 $R_{\rm int} = 0.029$

7 - 2

Table 1			
Hydrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1D \cdots Cl1$	0.89	2.32	3.202 (2)	170
$N1 - H1E \cdot \cdot \cdot Cl1^{i}$	0.89	2.43	3.298 (3)	167
$N1 - H1F \cdot \cdot \cdot Cl3^{i}$	0.89	2.52	3.381 (2)	162
$N2-H2A\cdotsO1W$	0.89	1.97	2.849 (4)	170
$N2-H2B\cdots Cl3^{ii}$	0.89	2.61	3.389 (2)	146
$N2-H2C\cdots Cl4$	0.89	2.45	3.307 (3)	161
$N3-H3A\cdots Cl1^{i}$	0.89	2.46	3.293 (3)	156
$N3-H3B\cdots Cl5$	0.89	2.51	3.402 (2)	174
$N3-H3C\cdots Cl1^{iii}$	0.89	2.32	3.201 (3)	173
O1W−H1WA···Cl4 ⁱⁱ	0.85(1)	2.56 (3)	3.283 (2)	143 (4)
$O1W-H1WB\cdots Cl2^{iv}$	0.85 (4)	2.69 (3)	3.344 (2)	136 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2046).

References

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Chaabouni, S., Savariault, J. M. & Salah, H. (2004). J. Chem. Crystallogr. 34, 661–664.

Lipka, A. (1980). Z. Anorg. Allg. Chem. 469, 218-228.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m438 [doi:10.1107/S1600536812009427]

Tris(4-methylanilinium) pentachloridoantimonate(III) chloride monohydrate

Qian Xu

Comment

The title compound was prepared in attempts to synthesize new materials with ferroelectric phase transition. Unfortunately, the dielectric permeability of title compound goes smoothly in the temperature range 80–293 K, suggesting no distinct phase transitions occurred.

A view asymmetric unit of the title compound is shown in Fig. 1. It consists of three p-toluidine cations, one water molecule, and Cl⁻ and $[SbCl_5]^{2-}$ anions. Hydrogen bonding between cations, anions and water molecules (Table 1, Fig. 2) produces two-dimensional network parallel to the *ac* plane. Analogous system of hydrogen bonds exists in closely related structure of tris-anilinium chloride pentachloroantimonate (III) monohydrate (Chaabouni *et al.*, 2004)

The Sb atom is coordinated by five Cl atoms in a slightly distorted square-pyramidal mode. The distance from Sb to the apical Cl atom is much shorter than the equatorial Sb—Cl bonds. Such structure is typical of $[SbCl_5]^{2-}$ -containing salts (Lipka, 1980). Two anions $[SbCl_5]^{2-}$ related by an inversion center are joined by Sb…Cl interactions [Sb…Cl = 3.7273 (14) Å] into the Sb₂Cl₁₀⁴⁻ dimer with two bridging Cl atoms.

Experimental

The mixture of SbCl₃ (1.1 g, 5 mmol) and p-toluidine (1.05 g, 10 mmol) was dissolved in hydrochloric acid and stirred for several minutes at room temperature. Colorless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å for phenyl and 0.96 Å for methyl groups, and N—H = 0.89 Å; $U_{iso}(H) = 1.2 U_{iso}(C)$ for phenyl and 1.5 $U_{iso}(C,N)$ for methyl and ammonium H atoms. In water molecule the O—H distances in water were restrained to 0.85 (1) Å, and the distance H…H – to 1.38 (2) Å.

Computing details

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear* (Rigaku, 2005); data reduction: *CrystalClear* (Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title compound with atom labelling scheme and thermal ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

The system of hydrogen bonds (shown as dashed lines) in the title compound.

Tris(4-methylanilinium) pentachloridoantimonate(III) chloride monohydrate

Z = 2
F(000) = 680
$D_{\rm x} = 1.556 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6609 reflections
$\theta = 2.3 - 27.5^{\circ}$
$\mu = 1.53 \text{ mm}^{-1}$
T = 293 K
Block, brown
$0.31 \times 0.25 \times 0.22 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.649, T_{\max} = 0.730$	15103 measured reflections 6609 independent reflections 6031 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$
Refinement	
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.075$ S = 1.06 6609 reflections 304 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 0.2569P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.041$ $\Delta\rho_{max} = 0.45$ e Å ⁻³ $\Delta\rho_{min} = -0.63$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0277 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5819 (5)	-0.1182 (3)	0.1786 (3)	0.0788 (11)	
H1A	0.6179	-0.1519	0.1289	0.118*	
H1B	0.4873	-0.1416	0.2087	0.118*	
H1C	0.6445	-0.1446	0.2379	0.118*	
C2	0.5756 (3)	0.0133 (2)	0.1160 (2)	0.0491 (6)	
C3	0.4543 (4)	0.0833 (3)	0.1201 (3)	0.0681 (9)	
Н3	0.3746	0.0492	0.1655	0.082*	
C4	0.4473 (3)	0.2033 (3)	0.0584 (3)	0.0599 (8)	
H4	0.3635	0.2493	0.0612	0.072*	
C5	0.5651 (3)	0.2528 (2)	-0.00645 (19)	0.0379 (5)	
C6	0.6881 (3)	0.1871 (2)	-0.0109 (3)	0.0553 (7)	
H6	0.7685	0.2219	-0.0545	0.066*	
C7	0.6920 (4)	0.0668 (2)	0.0508 (3)	0.0614 (8)	
H7	0.7761	0.0214	0.0476	0.074*	
C8	0.7153 (4)	-0.0700 (3)	0.4215 (4)	0.0913 (13)	

	0.001.6	0.1004		0.105*
H8A	0.8016	-0.1084	0.4582	0.137*
H8B	0.7278	-0.0594	0.3460	0.137*
H8C	0.6367	-0.1169	0.4594	0.137*
C9	0.6836 (3)	0.0481 (3)	0.4229 (3)	0.0570 (8)
C10	0.6689 (3)	0.0565 (3)	0.5211 (3)	0.0636 (8)
H10	0.6762	-0.0115	0.5872	0.076*
C11	0.6434 (3)	0.1633 (2)	0.5252 (2)	0.0522 (7)
H11	0.6358	0.1673	0.5927	0.063*
C12	0.6420 (3)	0.2577 (2)	0.3272 (2)	0.0486 (6)
H12	0.6318	0.3255	0.2613	0.058*
C13	0.6697 (3)	0.1498 (3)	0.3258 (3)	0.0595 (8)
H13	0.6791	0.1459	0.2582	0.071*
C14	0.0597 (5)	-0.1055 (3)	0.2261 (4)	0.0835 (11)
H14A	-0.0081	-0.1487	0.2850	0.125*
H14B	0.1549	-0.1419	0.2437	0.125*
H14C	0.0376	-0.1044	0.1580	0.125*
C15	0.0512 (3)	0.0175 (2)	0.2129 (3)	0.0520(7)
C16	0.0510 (3)	0.0397 (2)	0.3037 (2)	0.0548 (7)
H16	0.0582	-0.0228	0.3738	0.066*
C17	0.0403 (3)	0.1524 (2)	0.2937 (2)	0.0504 (6)
H17	0.0406	0.1655	0.3561	0.060*
C18	0.0292 (2)	0.2445 (2)	0.1900 (2)	0.0379 (5)
C19	0.0306 (3)	0.2262(2)	0.0970 (2)	0.0509 (7)
H19	0.0239	0.2889	0.0271	0.061*
C20	0.0423 (4)	0.1126 (3)	0 1097 (3)	0.0597 (8)
H20	0.0443	0.0997	0.0470	0.072*
C21	0.6298 (2)	0.0997 0.2630(2)	0.4271(2)	0.072 0.0382 (5)
C16	0.0270(2)	0.2050(2) 0.39064(5)	0.4271(2) 0.30055(5)	0.0302(3)
C13	0.26747(0) 0.34735(7)	0.53004(5) 0.63633(5)	0.300000(5)	0.03774(14) 0.04439(14)
C12	0.07743(7)	0.61304 (6)	0.32017(5)	0.04439(14)
C12	0.02743(7) 0.27670(8)	0.01394(0)	0.19317 (5)	0.04800(15)
C14 C15	-0.04581(7)	0.30900(0) 0.34207(6)	0.30178(3) 0.42014(6)	0.03103(10)
CI3 N1	-0.04381(7)	0.34297(0) 0.28021(17)	0.43914(0)	0.04092(13)
	0.3387 (2)	0.38021 (17)	-0.07704 (17)	0.0446 (3)
HID	0.6201	0.4117	-0.0559	0.067*
HIE	0.4/01	0.4118	-0.0/18	0.06/*
HIF	0.5820	0.3938	-0.1480	0.067*
N2	0.5985 (2)	0.37651 (19)	0.43079 (19)	0.0467 (5)
H2A	0.6203	0.4335	0.3642	0.070*
H2B	0.6507	0.3784	0.4806	0.070*
H2C	0.5056	0.3862	0.4498	0.070*
N3	0.0109 (2)	0.36535 (18)	0.17691 (19)	0.0454 (5)
H3A	0.0890	0.4014	0.1407	0.068*
H3B	-0.0019	0.3647	0.2436	0.068*
H3C	-0.0653	0.4029	0.1385	0.068*
Sb1	0.137115 (15)	0.499310 (12)	0.384947 (11)	0.03139 (7)
Cl1	0.74902 (6)	0.49450 (5)	0.02248 (5)	0.04278 (14)
O1W	0.6775 (2)	0.5732 (2)	0.23099 (19)	0.0591 (5)
H1WA	0.686 (5)	0.620 (4)	0.258 (4)	0.129 (18)*
H1WB	0.758 (3)	0.562 (4)	0.200 (4)	0.14 (2)*

Atomic	displacement	parameters	(\AA^2)
11000000	enop rere enrente	per en	/

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
C1	0.126 (3)	0.0427 (16)	0.059 (2)	-0.0255 (19)	-0.015 (2)	-0.0082 (14)
C2	0.0684 (18)	0.0365 (13)	0.0381 (14)	-0.0169 (13)	-0.0052 (12)	-0.0091 (11)
C3	0.0575 (19)	0.0624 (19)	0.064 (2)	-0.0254 (16)	0.0151 (15)	-0.0092(15)
C4	0.0463 (15)	0.0519 (17)	0.0643 (19)	-0.0039 (13)	0.0102 (13)	-0.0138 (14)
C5	0.0428 (13)	0.0362 (12)	0.0348 (12)	-0.0074 (10)	-0.0032 (10)	-0.0146 (10)
C6	0.0432 (14)	0.0420 (14)	0.0656 (19)	-0.0089 (12)	0.0110 (13)	-0.0125 (13)
C7	0.0587 (18)	0.0377 (14)	0.073 (2)	0.0026 (13)	0.0010 (15)	-0.0146 (14)
C8	0.063 (2)	0.061 (2)	0.167 (4)	-0.0060 (18)	-0.007(2)	-0.066 (3)
C9	0.0355 (13)	0.0500 (16)	0.092 (2)	-0.0043 (12)	-0.0065 (14)	-0.0361 (16)
C10	0.0588 (18)	0.0506 (17)	0.068 (2)	-0.0120 (14)	-0.0118 (15)	-0.0110 (15)
C11	0.0547 (16)	0.0536 (16)	0.0476 (16)	-0.0097 (13)	-0.0041 (12)	-0.0204 (13)
C12	0.0460 (14)	0.0525 (16)	0.0477 (15)	-0.0012 (12)	-0.0047 (11)	-0.0228 (12)
C13	0.0535 (17)	0.072 (2)	0.070 (2)	-0.0007 (15)	-0.0069 (14)	-0.0470 (17)
C14	0.094 (3)	0.054 (2)	0.102 (3)	0.0050 (19)	-0.003 (2)	-0.038 (2)
C15	0.0428 (14)	0.0463 (15)	0.0651 (18)	0.0038 (12)	-0.0050 (13)	-0.0245 (13)
C16	0.0547 (16)	0.0446 (15)	0.0519 (17)	-0.0005 (13)	-0.0095 (13)	-0.0091 (12)
C17	0.0586 (16)	0.0506 (15)	0.0418 (14)	-0.0059 (13)	-0.0096 (12)	-0.0184 (12)
C18	0.0321 (11)	0.0394 (12)	0.0441 (13)	-0.0036 (10)	-0.0078 (10)	-0.0186 (10)
C19	0.0662 (18)	0.0444 (14)	0.0394 (14)	-0.0025 (13)	-0.0103 (12)	-0.0150 (11)
C20	0.076 (2)	0.0608 (18)	0.0523 (17)	0.0000 (16)	-0.0066 (15)	-0.0344 (15)
C21	0.0283 (11)	0.0415 (13)	0.0487 (14)	-0.0063 (10)	-0.0029 (10)	-0.0225 (11)
C16	0.0361 (3)	0.0465 (3)	0.0429 (3)	-0.0003 (2)	0.0002 (2)	-0.0262 (3)
C13	0.0448 (3)	0.0446 (3)	0.0474 (3)	-0.0162 (3)	0.0032 (3)	-0.0218 (3)
Cl2	0.0510 (4)	0.0476 (3)	0.0368 (3)	-0.0034 (3)	-0.0084 (3)	-0.0099 (3)
Cl4	0.0647 (4)	0.0520 (4)	0.0348 (3)	0.0012 (3)	-0.0120 (3)	-0.0156 (3)
C15	0.0387 (3)	0.0489 (3)	0.0551 (4)	-0.0166 (3)	0.0054 (3)	-0.0233 (3)
N1	0.0557 (13)	0.0341 (10)	0.0411 (12)	-0.0069 (9)	-0.0067 (9)	-0.0124 (9)
N2	0.0415 (11)	0.0518 (13)	0.0542 (13)	-0.0025 (10)	-0.0072 (10)	-0.0293 (11)
N3	0.0459 (12)	0.0422 (11)	0.0508 (13)	-0.0045 (10)	-0.0130 (10)	-0.0202 (10)
Sb1	0.02980 (10)	0.03616 (10)	0.02999 (10)	-0.00388 (6)	0.00011 (6)	-0.01637 (7)
Cl1	0.0404 (3)	0.0455 (3)	0.0445 (3)	-0.0007 (3)	-0.0049 (2)	-0.0220 (3)
O1W	0.0567 (13)	0.0671 (14)	0.0617 (13)	-0.0053 (11)	-0.0021 (10)	-0.0361 (11)

Geometric parameters (Å, °)

C1—C2	1.511 (4)	C14—H14B	0.9600
C1—H1A	0.9600	C14—H14C	0.9600
C1—H1B	0.9600	C15—C16	1.377 (4)
C1—H1C	0.9600	C15—C20	1.385 (4)
C2—C7	1.367 (4)	C16—C17	1.386 (4)
C2—C3	1.371 (5)	C16—H16	0.9300
C3—C4	1.385 (4)	C17—C18	1.375 (4)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.360 (4)	C18—C19	1.376 (3)
C4—H4	0.9300	C18—N3	1.473 (3)
C5—C6	1.353 (4)	C19—C20	1.385 (4)
C5—N1	1.480 (3)	C19—H19	0.9300

C6—C7	1.388 (4)	C20—H20	0.9300
С6—Н6	0.9300	C21—N2	1.474 (3)
С7—Н7	0.9300	Cl6—Sb1	2.4043 (9)
C8—C9	1.518 (4)	Cl3—Sb1	2.6262 (11)
C8—H8A	0.9600	Cl2—Sb1	2.6011 (12)
C8—H8B	0.9600	Cl4—Sb1	2.6120 (13)
C8—H8C	0.9600	Cl5—Sb1	2.6124 (11)
C9—C10	1.367 (5)	N1—H1D	0.8900
C9—C13	1.380 (5)	N1—H1E	0.8900
C10—C11	1.389 (4)	N1—H1F	0.8900
C10—H10	0.9300	N2—H2A	0.8900
C11—C21	1.375 (4)	N2—H2B	0.8900
C11—H11	0.9300	N2—H2C	0.8900
C12—C21	1.371 (3)	N3—H3A	0.8900
C12—C13	1.387 (4)	N3—H3B	0.8900
C12—H12	0.9300	N3—H3C	0.8900
С13—Н13	0.9300	O1W—H1WA	0.845 (10)
C14—C15	1.504 (4)	O1W—H1WB	0.847 (10)
C14—H14A	0.9600		
C2—C1—H1A	109.5	C16—C15—C20	117.5 (3)
C2—C1—H1B	109.5	C16—C15—C14	121.0 (3)
H1A—C1—H1B	109.5	C20—C15—C14	121.5 (3)
C2—C1—H1C	109.5	C15—C16—C17	121.9 (3)
H1A—C1—H1C	109.5	C15—C16—H16	119.0
H1B—C1—H1C	109.5	C17—C16—H16	119.0
C7—C2—C3	117.4 (2)	C18—C17—C16	118.8 (3)
C7—C2—C1	120.5 (3)	C18—C17—H17	120.6
C3—C2—C1	122.2 (3)	С16—С17—Н17	120.6
C2—C3—C4	121.8 (3)	C17—C18—C19	121.1 (2)
С2—С3—Н3	119.1	C17—C18—N3	120.3 (2)
С4—С3—Н3	119.1	C19—C18—N3	118.6 (2)
C5—C4—C3	118.8 (3)	C18—C19—C20	118.7 (2)
С5—С4—Н4	120.6	C18—C19—H19	120.7
C3—C4—H4	120.6	С20—С19—Н19	120.7
C6—C5—C4	121.3 (2)	C15—C20—C19	121.9 (3)
C6—C5—N1	118.6 (2)	С15—С20—Н20	119.0
C4—C5—N1	120.1 (2)	С19—С20—Н20	119.0
C5—C6—C7	118.8 (3)	C12—C21—C11	121.0 (2)
С5—С6—Н6	120.6	C12—C21—N2	120.1 (2)
С7—С6—Н6	120.6	C11—C21—N2	118.9 (2)
C2—C7—C6	121.9 (3)	C5—N1—H1D	109.5
С2—С7—Н7	119.0	C5—N1—H1E	109.5
С6—С7—Н7	119.0	H1D—N1—H1E	109.5
С9—С8—Н8А	109.5	C5—N1—H1F	109.5
С9—С8—Н8В	109.5	H1D—N1—H1F	109.5
H8A—C8—H8B	109.5	H1E—N1—H1F	109.5
С9—С8—Н8С	109.5	C21—N2—H2A	109.5
H8A—C8—H8C	109.5	C21—N2—H2B	109.5

H8B—C8—H8C	109.5	H2A—N2—H2B	109.5
C10—C9—C13	118.1 (3)	C21—N2—H2C	109.5
C10—C9—C8	120.5 (3)	H2A—N2—H2C	109.5
C13—C9—C8	121.4 (3)	H2B—N2—H2C	109.5
C9—C10—C11	122.0 (3)	C18—N3—H3A	109.5
C9—C10—H10	119.0	C18—N3—H3B	109.5
C11—C10—H10	119.0	H3A—N3—H3B	109.5
C21—C11—C10	118.5 (3)	C18—N3—H3C	109.5
C21—C11—H11	120.8	H3A—N3—H3C	109.5
C10-C11-H11	120.8	H3B—N3—H3C	109.5
C21—C12—C13	119.1 (3)	Cl6—Sb1—Cl2	85.80 (4)
C21—C12—H12	120.5	Cl6—Sb1—Cl4	85.36 (3)
C13—C12—H12	120.5	Cl2—Sb1—Cl4	171.07 (2)
C9—C13—C12	121.3 (3)	Cl6—Sb1—Cl5	86.20 (3)
С9—С13—Н13	119.4	Cl2—Sb1—Cl5	88.98 (4)
С12—С13—Н13	119.4	Cl4—Sb1—Cl5	91.76 (4)
C15—C14—H14A	109.5	Cl6—Sb1—Cl3	85.26 (3)
C15—C14—H14B	109.5	Cl2—Sb1—Cl3	91.42 (4)
H14A—C14—H14B	109.5	Cl4—Sb1—Cl3	86.53 (4)
C15—C14—H14C	109.5	Cl5—Sb1—Cl3	171.40 (2)
H14A—C14—H14C	109.5	H1WA—O1W—H1WB	109 (2)
H14B—C14—H14C	109.5		
C7—C2—C3—C4	1.8 (5)	C21—C12—C13—C9	0.7 (4)
C1—C2—C3—C4	-176.9 (3)	C20-C15-C16-C17	0.9 (4)
C2—C3—C4—C5	-1.1 (5)	C14—C15—C16—C17	-178.7 (3)
C3—C4—C5—C6	-0.4 (5)	C15-C16-C17-C18	0.2 (4)
C3—C4—C5—N1	176.9 (3)	C16-C17-C18-C19	-1.0 (4)
C4—C5—C6—C7	1.1 (5)	C16—C17—C18—N3	177.2 (2)
N1—C5—C6—C7	-176.3 (3)	C17—C18—C19—C20	0.6 (4)
C3—C2—C7—C6	-1.1 (5)	N3—C18—C19—C20	-177.6 (3)
C1—C2—C7—C6	177.6 (3)	C16—C15—C20—C19	-1.3 (5)
C5—C6—C7—C2	-0.3 (5)	C14—C15—C20—C19	178.2 (3)
C13—C9—C10—C11	-1.2 (4)	C18—C19—C20—C15	0.6 (5)
C8—C9—C10—C11	178.4 (3)	C13—C12—C21—C11	-0.5 (4)
C9—C10—C11—C21	1.4 (4)	C13—C12—C21—N2	-179.2 (2)
C10—C9—C13—C12	0.2 (4)	C10-C11-C21-C12	-0.5 (4)
C8—C9—C13—C12	-179.4 (3)	C10-C11-C21-N2	178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1D…C11	0.89	2.32	3.202 (2)	170
N1—H1E····Cl1 ⁱ	0.89	2.43	3.298 (3)	167
N1—H1F····Cl3 ⁱ	0.89	2.52	3.381 (2)	162
N2—H2 <i>A</i> ···O1 <i>W</i>	0.89	1.97	2.849 (4)	170
N2—H2 <i>B</i> ···Cl3 ⁱⁱ	0.89	2.61	3.389 (2)	146
N2—H2 <i>C</i> ···Cl4	0.89	2.45	3.307 (3)	161
N3—H3A····Cl1 ⁱ	0.89	2.46	3.293 (3)	156

supplementary materials

N3—H3 <i>B</i> ···Cl5	0.89	2.51	3.402 (2)	174
N3—H3C···Cl1 ⁱⁱⁱ	0.89	2.32	3.201 (3)	173
O1 <i>W</i> —H1 <i>WA</i> ···Cl4 ⁱⁱ	0.85 (1)	2.56 (3)	3.283 (2)	143 (4)
O1W—H1 WB ···Cl2 ^{iv}	0.85 (4)	2.69 (3)	3.344 (2)	136 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*.